Obsah

<table>
<thead>
<tr>
<th>Kopie</th>
<th>Strana</th>
</tr>
</thead>
<tbody>
<tr>
<td>Popis přístroje</td>
<td>6</td>
</tr>
<tr>
<td>Části přístroje</td>
<td>6</td>
</tr>
<tr>
<td>Obecný popis</td>
<td>6</td>
</tr>
<tr>
<td>Zapnutí přístroje</td>
<td>7</td>
</tr>
<tr>
<td>Sériové číslo a verze software</td>
<td>7</td>
</tr>
<tr>
<td>Menu a ikony</td>
<td>8</td>
</tr>
<tr>
<td>Baterie</td>
<td>9</td>
</tr>
<tr>
<td>Přezkoušení stavu baterí</td>
<td>9</td>
</tr>
<tr>
<td>Nastavení</td>
<td>10</td>
</tr>
<tr>
<td>Typ baterie</td>
<td>10</td>
</tr>
<tr>
<td>Jednotka pro měření teploty</td>
<td>10</td>
</tr>
<tr>
<td>Jednotka průměru ložiska</td>
<td>10</td>
</tr>
<tr>
<td>Příslušenství</td>
<td>11</td>
</tr>
<tr>
<td>Měření stavu ložisek</td>
<td>12</td>
</tr>
<tr>
<td>The Shock Pulse Method / Metoda Rázových Pulsů</td>
<td>12</td>
</tr>
<tr>
<td>Kobercová hodnota dBc</td>
<td>12</td>
</tr>
<tr>
<td>Maximální hodnota dBm</td>
<td>12</td>
</tr>
<tr>
<td>Normalizovaná hodnota rázových pulsů a dBi</td>
<td>13</td>
</tr>
<tr>
<td>Technika dBm/dBc</td>
<td>14</td>
</tr>
<tr>
<td>Pravidla pro výběr SPM měřicích bodů</td>
<td>15</td>
</tr>
<tr>
<td>Příklady SPM měřicích bodů</td>
<td>16</td>
</tr>
<tr>
<td>Měřicí rozsah</td>
<td>18</td>
</tr>
<tr>
<td>Vytvoření přijatelných měřicích podmínek</td>
<td>19</td>
</tr>
<tr>
<td>Interval měření</td>
<td>20</td>
</tr>
<tr>
<td>Snímače rázových pulsů</td>
<td>21</td>
</tr>
<tr>
<td>Měření rázových pulsů přístrojem Bearing Checker</td>
<td>23</td>
</tr>
<tr>
<td>Vstupní údaje</td>
<td>23</td>
</tr>
<tr>
<td>Zadání průměru hřídele a ot/min pro výpočet dBi</td>
<td>23</td>
</tr>
<tr>
<td>Manuální zadání dBi</td>
<td>23</td>
</tr>
<tr>
<td>Měření rázových pulsů</td>
<td>24</td>
</tr>
<tr>
<td>TLT - Test snímače</td>
<td>25</td>
</tr>
<tr>
<td>Uložení naměřených výsledků</td>
<td>25</td>
</tr>
<tr>
<td>Poslech vzorku rázových pulsů</td>
<td>26</td>
</tr>
<tr>
<td>Ověření stavu ložiska</td>
<td>27</td>
</tr>
<tr>
<td>Identifikace zdroje rázových pulsů</td>
<td>28</td>
</tr>
<tr>
<td>Vzorky rázových pulsů – stavové kódy</td>
<td>29</td>
</tr>
<tr>
<td>Typické vzorky rázových pulsů z važivých ložisek</td>
<td>30</td>
</tr>
<tr>
<td>Potvrzení vady ložiska</td>
<td>34</td>
</tr>
<tr>
<td>Měření na převodovkách</td>
<td>35</td>
</tr>
<tr>
<td>Diagram pro vyhodnocení</td>
<td>36</td>
</tr>
<tr>
<td>Měření teploty</td>
<td>38</td>
</tr>
<tr>
<td>Použití funkce Štetoskop</td>
<td>39</td>
</tr>
<tr>
<td>Technická specifikace</td>
<td>40</td>
</tr>
<tr>
<td>Údržba a kalibrace</td>
<td>41</td>
</tr>
</tbody>
</table>
Co lze v tomto návodu nalézt?

Tento návod k obsluze obsahuje užitečné informace o přístroji Bearing Checker, počínaje obecným popisem částí přístroje, uživatelského rozhraní, baterií a nastavení.

Dále následuje část popisující teorii měření rázových pulsů. Doporučujeme Vám seznámit se i s touto částí, neboť slouží k lepšímu pochopení naměřených výsledků a jejich správnému vyhodnocení.

Po teoretické části se budeme věnovat praktickému použití přístroje a metodám potvrzení naměřených výsledků.

Odkazy na ikony, displej a režimy přístroje jsou v textu označeny tučně. Odkazy na tlačítka přístroje jsou označeny velkými písmeny.
Popis přístroje

Části přístroje

1. Měřicí sonda
2. Teplotní IR senzor
3. Stavové LED indikátory
4. Grafický displej
5. Navigační tlačítko
6. Tlačítko Měření a Zapnutí přístroje
7. Sluchákový výstup
8. Vstup pro externí snímače
9. Indikační LED Měření
10. Prostor pro baterie
11. Nálepka se sériovým číslem

Obecný popis

Přístroj Bearing Checker je měřic rázových pulsů založený na ověřené SPM metodě (SPM = The Shock Pulse Method = Metoda Rázových Pulsů) určené pro rychlou a jednoduchou identifikaci vad ložisek. Přístroj má vestavený mikroprocesor pro analýzu vzorku rázových pulsů ze všech typů kuličkových a válečkových ložisek a pro zobrazení ohodnocené informace o provozních podmínkách ložiska.

Přístroj Bearing Checker je napájen z baterie a je navržen pro použití v tvrdých průmyslových podmínkách. Grafický displej (4) zobrazuje stavové hodnoty a LED indikátory (3) okamžitě ohodnotí stav ložiska způsobem zelená – žlutá – červená.

Sonda se snímačem rázových pulsů (1) je vestavěna v těle přístroje. Volitelně lze použít jakýkoliv jiný typ SPM snímače rázových pulsů pro měření na měřicích adaptérech a trvalých instalacích. Tyto externí snímače se připojují do konektoru (8). Po zadání hodnoty dBi zahájíme měření tlačítkem (6). Na grafickém displeji (4) se zobrazí naměřená hodnota stavu ve formě kobercové hodnoty dBc a maximální hodnoty dBm. Stavové indikátory (3) indikují ohodnocený stav formou zelená – žlutá – červená. Pro poslech vzorku rázových pulsů lze prostřednictvím konektoru (7) připojit sluchátka.

Bearing Checker lze též použít pro měření teploty povrchu pomocí IR senzoru (2) a pro poslech zvuku stroje pomocí sluchátek použitím funkce Stetoskop.

Pro poslech lze použít jak vnitřní tak externí sondy.
Zapnutí přístroje

Přístroj zapneme krátkým stiskem tlačítka (6).

Nastavení přístroje a výběr měřičího režimu provedeme pomocí směrových kláves (5).

Měření je zahájeno automaticky když stlačíme vnitřní sondu. Při použití externí sondy v menu Ložiska měření zahájíme stiskem tlačítka (6).

Během měření se rozsvítí modrá LED (9), po ukončení měřičího cyklu zhasne.

LED diody (3) zelená – žlutá – červená vedle displeje budou po dokončení měření SPM indikovat stav ložiska.

Přístroj se automaticky vypne po 2 minutách nečinnosti. Ručně jej lze vypnout současným stiskem tlačítka se šipkami VLEVO a VPRAVO.

Pokud přístroj opět zapneme, bude se nacházet v posledně používaném režimu.

Sériové číslo a verze software

Chcete-li zjistit, jaké verze software je instalována ve vašem přístroji, případně chcete-li zjistit sériové číslo, přejděte do Hlavního menu. Stiskněte tlačítko DOLŮ, čímž přejdete do menu Všeobecné nastavení. Klávesami VLEVO/VPRAVO zvolte ikonu SPM a poté stiskněte klávesu NAHORU. Na displeji se zobrazí verze software a S/N přístroje. Návrat do menu Všeobecné nastavení stiskněte tlačítko se šipkou VLEVO.

Pro návrat do Hlavního menu zvolte klávesami VLEVO/VPRAVO ikonu Návrat a stiskněte klávesu NAHORU.
Menu a ikony

Hlavní menu

Měření ložisek

Měření teploty

Funkce stetoskopu

Všeobecné nastavení

Měření ložisek

TLT test
Vstupní údaje
Měření
Zadání dBi
Poslech vzorku
Paměť

Měření teploty

Měření (nebo stiskem hrotu sondy)

Funkce stetoskopu

Hlasitost (1 – 8)

Všeobecné nastavení

Jednotka teploty
Zpět do hlavního menu
Typ baterii
Jednotka mm/palce
O přístroji
Baterie

V přístroji je vestavěn test, který zobrazí stávající napětí baterií. V případě nízkého stavu se na displeji zobrazí ikonka baterie. V takovém případě je třeba baterie vyměnit nebo nabít.

Životnost baterie závisí na způsobu používání přístroje. Největší spotřebu má přístroj pouze v okamžiku měření: od okamžiku stisknutí tlačítka měření do zobrazení výsledku.

V případě dlouhodobého skladování přístroje nezapomeňte baterie z přístroje vymout.

Přezkoušení stavu baterií

Ikona baterie v pravém horním rohu menu **Ložiska** zobrazuje stav baterií.

Pro přesné ověření napětí baterií přejděte do menu nastavení baterií:

V **Hlavním menu** stiskněte šipku DOLŮ, čímž se dostanete do menu **Všeobecné nastavení**. Tlačítky VLEVO/VPRAVO vyberte ikonu baterie a pro vstup do menu nastavení typu baterie stiskněte šipku NAHORU. Stávající napětí baterie je zobrazeno v levém horním rohu.

Pro návrat do menu **Všeobecné nastavení** stiskněte šipku VLEVO.
Nastavení

Typ baterie

V přístroji Bearing Checker lze použít buď alkalické nebo nabíjecí akumulátorové baterie. Typ baterie nemá žádný vliv na funkčnost či provozuschopnost přístroje, ale musí být nastaven v menu Typ baterie tak, aby zobrazovaná informace o stavu baterie byla korektní.

V Hlavním menu stiskněte šipku DOLŮ, čímž se dostanete do menu Všeobecné nastavení. Tlačítky VLEVO/VPRAVO vyberte ikonu Baterie a pro vstup do menu nastavení typu baterie stiskněte šipku NAHORU. Tlačítky se šipkami NAHORU/DOLŮ nastavte typ baterií které chcete používat (1,2V pro akumulátorové nebo 1,5V pro alkalické baterie). Pro uložení a návrat do menu Všeobecné nastavení stiskněte šipku VLEVO.

Pro návrat do Hlavního menu vyberte tlačítkem VLEVO ikonu Návrat a poté stiskněte šipku NAHORU.

Jednotka pro měření teploty

Měřenou teplotu lze zobrazit buď stupních Celsia nebo Fahrenheitů. Chcete-li jednotku změnit, stiskněte v Hlavním menu šipku DOLŮ, čímž se dostanete do menu Všeobecné nastavení. Tlačítky VLEVO/VPRAVO vyberte ikonu Teplota a pro vstup do menu nastavení jednotky teploty stiskněte šipku NAHORU. Tlačítky se šipkami NAHORU/DOLŮ nastavte požadovanou jednotku. Pro uložení a návrat do menu Všeobecné nastavení stiskněte šipku VLEVO.

Pro návrat do Hlavního menu vyberte tlačítkem VLEVO ikonu Návrat a poté stiskněte šipku NAHORU.

Jednotka průměru ložiska

Vnitřní průměr ložiska (průměr hřídele) lze zadávat buď v palcích nebo v mm. Chcete-li jednotku změnit, stiskněte v Hlavním menu šipku DOLŮ, čímž se dostanete do menu Všeobecné nastavení. Tlačítky VLEVO/VPRAVO vyberte ikonu Jednotka měření (symbol posuvného měřítka) a pro vstup do menu nastavení jednotky stiskněte šipku NAHORU. Tlačítky se šipkami NAHORU/DOLŮ nastavte požadovanou jednotku míry. Pro uložení a návrat do menu Všeobecné nastavení stiskněte šipku VLEVO.

Pro návrat do Hlavního menu vyberte tlačítkem VLEVO ikonu Návrat a poté stiskněte šipku NAHORU.
Příslušenství

EAR12 Náhlavní sluchátka v tlumičích hluku
TRA73 Externí snímač v ruční sondě
TRA74 Snímač s rychlokonektorem pro adaptéry SPM
TRA75 Snímač s rychlokonektorem, úhlový konektor
CAB52 měřicí kabel pro měření na trvale instalovaných snímačích, 1.5 m, Lemo – BNC, násuvný
15286 Držák ext. snímače na opasek
15287 Pouzdro pro příslušenství na opasek
15288 Ochranný kryt s poutkem na ruku
93363 Kabelová spojka, Lemo - BNC
93062 Kabelová spojka, BNC – TNC, zásuvka-zástrčka

Náhradní díly

13108 Gumová objímka hrotu sondy, chloropren, maximum 110 °C (230 °F)
Měření stavu ložisek

Přístroj Bearing Checker je založen na metodě rázových pulzů SPM. Metoda Rázových Pulsů poskytuje nepřímé měření rychlosti nárazů, tj. rozdíl rychlostí mezi dvěma částmi v momentě nárazu. V místě nárazu okamžitě v obou částech naroste mechanická tlaková vlna (rázový puls). Špičková hodnota rázového pulsu je určena rychlostí dopadu a není ovlivněna hmotou ani tvarem kolidujících částí. Rázové pulsy v rotujících kuličkových a válcových ložiskách jsou způsobeny nárazy mezi drahami a valivými elementy. Od místa nárazu se rázový puls šíří přes ložisko a ložiskový domek. Dlouhodobá zkušenost ukazuje, že existuje jednoduchý vztah mezi provozním stavem ložiska a úrovni rázových pulsů.

Snímač detekuje rázové pulsy v ložisku. Signály ze snímače jsou zpracovány mikroprocesorem a změřená hodnota rázových pulzů je zobrazena na displeji. K přístroji lze též připojit sluchátka a vzorek rázových pulzů si poslechnout. Upozorňujeme, že přístroj nelze použít pro kluzná ložiska.

Rázové pulsy jsou krátkodobé tlakové vlny generované mechanickými nárazy. Mechanické nárazy se objevují ve všech rotujících valivých ložiskách z důvodu nepravidelnosti povrchů drah a valivých elementů. Mohutnost rázových pulsů závisí na rychlosti nárazů.

Kobercová hodnota dBc

Maximální hodnota dBm

Poškození ložiska, tj. relativně velká nepravidelnost povrchů, zapříčiní vzrůst jednotlivých rázových pulzů s relativně velkou mohutností v některých intervalech. Nejvyšší hodnota rázového pulsu naměřená na ložisku se nazývá maximální hodnota dBm (decibel maximum value). Maximální hodnota dBm se používá k určení provozního stavu ložiska. Kobercová hodnota dBc pomáhá analyzovat příčinu zhoršeného či špatného provozního stavu.
Normalizovaná hodnota rázových pulsů a dBi

Bearing Checker měří rychlost nárazů ve velkém dynamickém rozsahu. Pro zjednodušení výsledků a jejich ohodnocení se používá logaritmická měřicí jednotka: decibel shock value (dBsv).

Absolutní úroveň rázových pulsů dBsv je funkci valivé rychlosti a stavu ložiska. Abychom eliminovali vliv valivé rychlosti na naměřený výsledek, je třeba Bearing Checker „naprogramovat“ zadáním průměru hřídele (v palcích nebo mm) a rotační rychlosti (v ot/min).

Chceme-li provést nenormalizované měření, nastavíme dBi „--“. Poté budete měřit absolutní úroveň rázových pulsů dBsv a přístroj nezobrazí indikaci stavu.

Během měření Bearing Checker sejme vzorek několika rázových pulsů, které se objeví během časového intervalu měření a zobrazí:

- maximální hodnotu dBm reprezentující malý počet silných pulsů s nejvyšší hodnotou
- kobercovou hodnotu dBc reprezentující velký počet slabších rázových pulsů
- rozsvítí příslušnou LED diodu na stupnici stavu: zelená pro dBm do 20dBn = dobrý stav, žlutá pro dBm v rozsahu 21 až 34 dBn = varování a červená pro dBm 35dBn a více = špatná stav.

Maximální hodnota dBm tedy definuje pozici stavu ložiska na stavové stupnici. Rozdíl mezi dBm a dBi se poté používá pro analýzu příčiny zhoršeného nebo špatného stavu.
Technika dBm/dBc

Technika dBm/dBc byla úspěšně aplikována již v roce 1969 a do dnešní doby se značně rozšířila. Je velmi vhodná pro sledování stavu strojů v průmyslu, neboť pracuje pouze s malým množstvím vstupních a výstupních dat, je snadno srozumitelná a poskytuje vyhodnocení s dostatečnou přesností.

Vzhledem k velkému rozsahu měřených hodnot je použita logaritmická stupnice, která dobře odliší rozdílné maximální hodnoty dobrého a vadného ložiska. Malé rozdíly při zadání vstupních dat (otáčky a průměr hřídele) mají malý vliv na vyhodnocení naměřených dat.

Stav mazání ložiska lze vyhodnotit pomocí velikosti naměřených hodnot dBm a dBc a jejich rozdílu. Vysoké hodnoty (dBm>20 dB) s malým rozdílem (\(\Delta\)dBm-dBc<10dB) znamenají omezené mazání nebo suchý chod. Pro účely údržby je taková informace dostatečná.

Hodnoty dBm a dBc jsou měřeny v pevném časovém intervalu a jsou automaticky zobrazeny na displeji přístroje. Poté přístroj pokračuje v měření, dokud je připojen snímač. Indikátor špiček blikne pokaždé, když měřený puls je silnější, než byla předchozí naměřená (a zobrazená) úroveň dBm.

Pro poslech vzorku rázových pulsů lze k přístroji připojit sluchátka. Tím lze ověřit zdroj pulsů v případě, že byla naměřena jejich vysoká hodnota. To, spolu s možností vyhledávání zdroje pulsů ruční sondou, umožňuje ověření naměřených hodnot a jejich příčiny.
Pravidla pro výběr SPM měřících bodů

Pravidla pro výběr SPM měřících bodů mají velice praktický účel. Snažíme se zachytit signály s nízkou energií, které jsou tím slabší, čím dále putují příp. čím vícekrát se odrazí uvnitř kovu, kterým se šíří. Víme, že ztrácí sílu při přechodu rozhraní dvou materiálů (olej mezi nimi ještě více třumí signál). Nemůžeme však u všech aplikací znát, jaká část signálu dorazí až k měřícímu bodu. Tím spíše je třeba se snažit dodržovat všeobecná pravidla, to znamená nakládat se signálem tak, aby měl stejnou kvalitu.

Pravidla pro SPM měřící body se snaží zajistit, že většina signálů je srovnatelná, má dostatečnou přesnost a vyhodnocovací zóny „zelená – žlutá – červená“ jsou platné:

1. Cesta signálu mezi ložiskem a měřícím bodem má být přímá a co možná nejkratší.
2. V cestě signálu může být jen jedno rozhraní materiálů a to mezi ložiskem a ložiskovým domkem.
3. Měřící bod se musí nacházet v zatížené zóně ložiska.

Pro výběr nejvhodnějšího měřícího místa na ložiskovém domku je vhodné použít ruční sondu a pomocí ní nalézat místo s nejsilnějším signálem. Je-li takového místa více, vyberte místo, ke kterému je nejlepší přístup.

Pokud nelze zvolit optimální měřící místo v souladu s uvedenými pravidly, vyberte náhradní místo se slabším signálem, ale při ohodnocení stavu to musíme vzít v úvahu.
Příklady SPM měřicích bodů

Následující dvě stránky nám ukazují měřicí body a možnost instalace měřicích šroubů a snímačů. Vlastní instalace tohoto SPM měřicího přístroje je popsána v instalacních návodech.

Průchozí otvor pro dlouhý měřicí šroub

Obrázek A ukazuje, jak lze dosáhnout měřicího bodu, který je umístěn pod krytem ventilátoru. K tomuto účelu použijeme dlouhého měřicího šroubu vedeného přes otvor krytu.

Měřicí šroub s přitužnou maticí

Na obr. B je kryt ventilátoru upevněn na víku motoru, které je současně jako ložiskové těleso. Jeden šroub upevňující kryt ventilátoru lze použít pro umístění měřicího šroubu se zajišťovací maticí.

Ložiskové těleso na ložiskové konzole

Při volbě umístění měřicích bodů je vhodné kontrolovat druh uložení dle strojního výkresu.

Obrázek C ukazuje čerpadlo, u kterého jsou ložiska uložená ve dvou oddělených skříních v jedné ložiskové konzole.

Dvojice ložisek měřicího bodu 1 lze zpřístupnit pomocí dlouhého měřicího šroubu. Průchozí otvor musí být dostatečně veliký, abychom mohli zajistit ložisko tak, aby se měřicí šroub nedostal do styku s ložiskovou konzolou.

Měřicí bod 2 naproti výtoku z čerpadla (z důvodu směru zatížení) lze dosáhnout otvorem ve štítu čerpadla.

Více ložisek v jednom tělese

Pokud ložiska leží blízko sebe, hrozí nebezpečí přenosu signálu rovněž mezi měřicími body 1 a 2. To znamená, že signály z nejhoršího ložiska se budou přenášet na oba měřicí body a tam je také bude možno měřit. Zkuste měřit sílu rázových pulsů ruční dotykovou sondou. Jsou-li všude stejně silné, stačí jen jeden měřicí bod ve středu (x) tj. mezi body 1 a 2.
U velikých elektromotorů jsou ložiska často umístěna v ložiskovém pouzdře, které je buď přivařeno nebo přišroubováno na štít motoru. Z důvodu tlumení signálu na materiálových přechodech mezi ložiskovým pouzdrem a štítem by měl měřicí bod ležet přímo na ložiskovém pouzdře.

Ložiskové pouzdro na straně pohonu je obvykle přístupné. Dlouhý měřicí šroub instalujeme tak, aby pro připojení rychlospojky bylo dostatek místa.

Pro hlídání ložiska na straně ventilátoru je nutný pevně instalovaný snímač. Tento umístíme v ložiskovém pouzdře. Koaxiální kabel pak vedeme přes otvor v krytu ventilátoru k měřicímu terminálu na rámu statoru motoru.

Kontrola instalace

Nesprávně instalované adaptéry nebo snímače mohou být příčinou významného útlumu signálu různých pulsů.

Zkontrolujte proto instalaci. Ujistěte se, že měřicí otvory byly správně zahloubeny a sedlo adaptéru má dobry kontakt s materiálem ložiskového domku.

Jakýkoliv kovový díl stroje klepající nebo drhnoucí o adaptér způsobuje rušení. Tomu je třeba zabránit vytvořením dostatečně velkých otvorů a použitím elastických těsnících materiálů.

Označte měřicí místa

Měřicí místa pro měření ruční sondou by měly být zřetelně označeny. Pro získání porovnatelných výsledků je vždy třeba měřit na stejném místě.
Měřicí rozsah

Měřicí rozsah přístroje Bearing Checker je velký a pokrývá většinu ložiskových aplikací. Existuje však několik případů, kdy lze měřit rázové pulsy pouze pomocí pevně instalovaného příslušenství a nebo vůbec.

Vysokorychlostní aplikace: Bearing Checker počítá s max. rychlostí 19 999 ot/min, max. průměrem 1 999 mm, příp. s max. dBi=40. Horní část tabulky (vpravo) obsahuje příklady kombinací průměru hřídele a rotační rychlosti, u kterých vychází max. dBi =40. Spodní část tabulky uvádí příklady kombinací, u kterých naopak vychází dBi = 0. Přístroj počítá max. dBi =40, ale ručně je možné nastavit dBi až 60. To je užitečné např. u turbodmychadel, vysokorychlostních převodovek atd.

Nízkootáčkové aplikace: Nejnižší akceptovatelná hodnota je –9dB. Avšak je téměř nemožné získat smysluplné hodnoty u extrémně nízkých rychlostí. Praktický limit jsou ložiska u nichž vychází dBi okolo 0 dB (viz spodní polovina tabulky).

Velké zatížení s dobře definovaným směrem a nízká úroveň rušivých signálů, to jsou předpoklady k získání smysluplných hodnot u nízkootáčkových ložisek. Úspěšné monitorování SPM lze provádět i u aplikací s dBi=-3 (např. 54 ot/min a průměr hřídele 260 mm).

Dynamický měřicí rozsah klesá, pokud vychází dBi nižší než 0. Např. ložisko s dBi=-3 bude vykazovat velmi těžké poškození již při dBn=40.

Pevně instalované měřící adaptéry: Instalace měřících adaptérů je důrazně doporučena pro veškerý systematický monitoring rázových pulsu. V určitých případech je instalace adaptérů nezbytná:
- pro aplikaci, kde dBi je nižší než 5
- u silně vibrujících ložiskových domků
- u zakrytých ložiskových domků.

Nízké otáčky: Nepoužívejte ruční sondu u nízkootáčkových aplikací. Pravidlem je, že měření by mělo trvat nejméně 10 celých otáček hřídele. Jednotlivá poškozená část valivé dráhy bude produkce silně rázové puly, bude-li říet valivým elementem proveden v okamžiku, kdy prochází zatiženou zónou. Může trvat několik otáček, než se tato událost objeví nebo než se zapojuje.
Vytvoření přijatelných měřicích podmínek

Klepající ventily, vysokotlaká pára, mechanické drhnutí, poškozené nebo špatně sestavené převody či zátěžové rázy z provozu stroje mohou zapříčinit všeobecně vysokou úroveň rázů na rámu stroje. Toto rušení může překryt signál ložiska v případě, že úroveň rázů měřená mimo ložiskový domek je stejně vysoká nebo dokonce vyšší, nežli je úroveň rázů na ložiskovém domku.

Odstraňte zdroje rušení

Monitoring ložisek je zbytečný, selhává-li stroj často či vyžaduje-li časté opravy z důvodu nedostatečné údržby jiné části, případně z důvodu špatně nastavených pracovních podmínek. Proto rušení neakceptujte, ale snažte se je odstranit.

Jak se vyrovnat s rušením
Nelze-li zdroj rušení odstranit, existuje několik možností:
- jedná-li se o občasné rušení, měřte tehy, když se nevyskytuje.

Je-li rušení trvalé, změřte úroveň jeho rázových pulsů se stejným dBi jako ložiska a porovnejte se stavovými zónami:
- překryvá-li rušení pouze zelenou zónu, můžete obdržet korektní informaci o stavu ložiska ve žluté a červené zóně.
- překryvá-li rušení žlutou zónu, můžete obdržet korektní informaci o stavu ložiska v červené zóně, tzn. nalézát vadu ložiska.

Je-li rušení trvalé vyšší, než úroveň rázů odpovídající vadnému ložisku (35 až 40 dB nad dBi), monitoring ložiska není možný.
Interval měření

Nepředpokládaný, rychlý vývoj poškození, se vyskytuje zřídka. V normálním případě se vada povrchu vyvíjí pomalu, během několika měsíců. Existují obecná pravidla pro volbu intervalu mezi periodickým měřením:

- Ložisko by mělo být měřeno nejméně jedenkrát za 3 měsíce.
- Ložisko na kritickém stroji a těžce předepjaté ložisko (např. ložiska vřeten) by mělo být měřeno častěji, než jiná ložiska.
- Ložiska by měla být měřena častěji, vykazují-li nestabilní stav (nárůst nebo nepravidelné hodnoty).
- Poškozená ložiska by měla být sledována pozorně, dokud nejsou vyměněna.

To znamená, že bychom si měli vyhradit zvláštní čas pro měření ložisek v nejistém či špatném stavu.

Přezkoušejte záložní stroje
Vibrace a koroze mohou zničit ložiska u záložních strojů. Prověřte proto stav ložisek pokaždé, když mají být tyto stroje testovány nebo používány.

Synchronizujte měření s mazáním
Jako nezbytné se jeví sladit měřící a domazávací interval. Tukem mazaná ložiska by měla být měřena nejdříve hodinu po domazání (s výjimkou provádění mazacího testu).

Mějte na vědomí, že špatný stav ložisek je často spojen s problémy mazání. U tukem mazaných ložisek často mazací test poskytne konečné rozhodnutí o vadě ložiska. Vždy se ujistěte, že je požíván správný typ a množství maziva.
Snímače rázových pulsů

Vestavěný snímač v sondě

Měřicí body pro vestavěnou sondu by měly být zřetelně označeny. Je potřeba měřit pokaždé ve stejném místě. Kromě toho se sonda používá pro měření na jiných místech stroje v případě, že je potřebné nalézt zdroj rušení, jako je kavitace nebo drhnutí části.

Hrot sondy je přitračován pružinou a pohybuje se uvnitř objímkové tvrdé gumy. Aby bylo dosaženo stabilního tlaku na hrot, přitačte sondu k měřicímu bodu až je gumová objímka v kontaktu s povrchem.

Držte sondu stabilně a pevně, aby se zabránilo drhnutí mezi hrotem sondy a povrchem (falesný signál).

Sonda je směrově citlivá. Musí být umístěna přímo nad ložiskem a osa sondy musí směřovat do místa vzniku signálu (do zatížené zóny).

Střed hrotu sondy by měl být v kontaktu s povrchem. Nemějte proto v dutinách a prohlubních menších, než je hrot sondy.

Snímač rázových pulsů v ruční sondě

Ruční sondou lze použít k dosažení měřicích bodů v úzkém prostoru a má stejnou konstrukci a způsob měření, jako vestavěná sonda (viz výše).

Jediná část, která může podléhat opotřebení, je gumová objímka kryjící hrot sondy. Je vyrobená z chloroprenové gumy (neopren) a odolává teplotám do 110°C. Náhradní objímku lze objednat pod SPM objednacím číslem 13108.

Gumová objímka v kontaktu s povrchem

Umístit na ložisku

Držet stabilně

Nemějte v místech s malým poloměrem

Snímač v ruční sondě TRA73
Snímač s rychlokonektorem

Všechny typy snímačů rázových pulsů jsou připojeny do vstupu (8). Volba typu snímače závisí na tom, jak je měřicí bod připraven. Pro systematické monitorování ložisek doporučuje SPM kdykoliv je to možné použít trvale instalované adaptéry a připojit snímač pomocí rychlospojky (bajonet).

Adaptéry jsou pevné kovové šrouby různé délky se závitovým připojením, laděné pro správný přenos signálu. Jsou instalovány v otvorech se závitem a zahloubenou hranou. Kromě toho jsou k dispozici nalepovací adaptéry (např. pro tenkostěnné ložiskové domky).

Snímač s rychlokonektorem připojte zatlačením oproti adaptéru a pootočením ve směru hodinových ručiček. Pootočením v opačném směru snímač sejmete.

Povrch adaptéru musí být čistý a rovný. Pro jeho ochranu proto použivejte plastové krytky (např. CAP02).

Zkontrolujte, že snímače a adaptéry byly instalovány správně (viz SPM návod na instalaci) a jsou v dobrém stavu. Nelze očekávat použitelný přenos signálu připojením snímače na rezavý kus kovu, nebo od snímače, který se válí na podlaze.

Trvale instalované snímače a měřící terminál

Trvale instalované snímače a měřící terminál (BNC nebo TNC konektory) se používají v případech, kdy ložisko nelze dosáhnout přímo. Bearing Checker se připojuje k terminálu pomocí měřícího kabelu CAB52. Pro ochranu konektorů použivejte SPM prachové krytky.

Zkontrolujte, že snímače a adaptéry byly instalovány správně (viz SPM návod na instalaci) a jsou v dobrém stavu. Nelze očekávat použitelný přenos signálu připojením snímače na rezavý kus kovu, nebo od snímače, který se válí na podlaze.
Měření rázových pulsů přístrojem Bearing Checker

Vstupní údaje

Pro měření stavu ložisek přístrojem Bearing Checker je třeba zadat prahovou hodnotu dBi. Pokud ji přímo neznáte, přístroj ji vypočte a zobrazí. Pro výpočet je třeba zadat rotační rychlost v ot/min a průměr hřídele v mm. Špatným zadáním těchto vstupních hodnot dojde ke špatnému vyhodnocení naměřeného výsledku.

Zadání průměru hřídele a ot/min pro výpočet dBi

V hlavním menu stiskněte šipku NAHORU pro vstup do módu měření ložisek. Pomocí šipek VLEVO/VPRAVO označte ikonu pro zadání otáček a stiskněte klávesu NAHORU. Pomocí šipek VLEVO/VPRAVO vyberte požadovanou pozici kurzoru a šipkami NAHORU/DOLÚ nastavte její hodnotu. Po ukončení nastavování ot/min stiskněte tlačítko MĚŘENÍ. Tím se dostanete do menu pro nastavení průměru hřídele, jenž nastavíte analogickým způsobem. Pro ukončení a návrat do menu pro měření ložisek stiskněte tlačítko MĚŘENÍ.

Manuální zadání dBi

Změna dBi je rychlejší, máte-li hodnotu zapsanou ve svých záznamech: V hlavním menu stiskněte šipku NAHORU pro vstup do módu měření ložisek. Pomocí šipek VLEVO/VPRAVO označte ikonu dBi a stiskněte klávesu NAHORU. Pomocí šipek VLEVO/VPRAVO vyberte požadovanou pozici kurzoru a šipkami NAHORU/DOLÚ nastavte její hodnotu. Pro ukončení a návrat do menu pro měření ložisek stiskněte tlačítko MĚŘENÍ.
Měření rázových pulsů

V hlavním menu stiskněte šipku NAHORU, čímž se dostanete do menu měření stavu ložisek. Ujistěte se, že průměr hřídele a ot/min (příp. přímo dBi) jsou správně zadány. V opačném případě bude naměřený výsledek nesprávný!

V menu měření ložiska přitačete hrot vestavěné sondy k měřicímu bodu. Měření bude zahájeno automaticky, trvá několik vteřin a během měření svítí modrá LED dioda. Výsledkem měření jsou dvě hodnoty - maximální dBm a kobercová dBc. V závislosti na hodnotě dBm se rozsvítí příslušná LED na stavovém indikátoru zelená – žlutá – červená.

Používáte-li externí snímač, je třeba měření spustit tlačítkem MĚŘENÍ. Přístroj provede test snímače a je-li výsledek neuspokojivý, zobrazí varovnou značku TLT. Další informace o TLT testu je uvedena v kapitole „TLT - Test snímače“.

Je-li měření dokončeno, LED indikátor zobrazí stav ložiska a kód vyhodnocení. Význam kódů je popsán v postupovém diagramu pro vyhodnocení na straně 36-37. Tento diagram by měl být použit pro další ohodnocení stavu ložiska.

Je-li zobrazen stav ložiska ve žluté nebo dokonce červené zóně, měli byste okamžitě ověřit podstatu těchto vysokých hodnot a jejich pravděpodobnou příčinu. Nevyslovujte verdikt „vada ložiska“ bez toho, abyste provedli následující ověření:

- použijte sluchátka k identifikaci vzorku rázových pulsů
- změřte hodnotu mimo ložiskový domek pro ověření zdroje rázových pulsů.

Při každém měření SPM je zároveň změřena i teplota povrchu. Chcete-li zobrazit naměřenou teplotu, šípkami VLEVO/ VPRAVO označte ikonu Návrat a stiskněte klávesu NAHORU. V hlavním menu stiskněte klávesu VLEVO, čímž se dostanete do menu pro měření teploty a na displeji se zobrazí změřená teplota. Do hlavního menu se vrátíte klávesou VLEVO.
TLT - Test snímače

Je-li pro měření použit externí snímač, provede se automaticky TLT – Test snímače (Transducer Line Test), aby se ověřila kvalita přenosu signálu mezi snímačem a přístrojem (pro zobrazení hodnoty TLT je třeba otevřít TLT menu, viz níže). Je-li provedeno měření SPM s nekvalitním přenosem signálu, přístroj zobrazí výstrahu TLT. V takovém případě totiž dojde ke ztrátě části signálu na přenosové cestě a naměřená hodnota bude nižší, než odpovídá skutečnosti.

Uložení naměřených výsledků

Tato funkce je užitečná pro snadné porovnání naměřených výsledků určitého měřícího bodu. Lze ji těž použít pro dočasné uložení naměřených výsledků do doby, než budou zaznamenány do formuláře. Na straně 42 tohoto návodu je doporučený formulář a lze jej pro tyto účely kopírovat.

Přístroj Bearing Checker může uložit až 10 naměřených hodnot SPM.

V menu Měření stavu ložisek klávesami VLEVO/VPRAVO zvýrazněte ikonu Paměť (obrázek zásuvky) a stiskněte klávesu NAHORU pro vstup do menu Paměť. Šipkami NAHORU/DOLŮ zvolte požadované místo v paměti (1 - 10). Klávesou VPRAVO naměřenou hodnotu uložíte. Tutto akce dojde k přepsání jakékoliv předchozí uložené hodnoty.

Pro návrat do menu Měření ložisek stiskněte klávesu VLEVO.

Naměřená hodnota je v paměti uložena včetně použité hodnoty dBi.
Poslech vzorku rázových pulsů

Rázové pulsy z rotujícího ložiska jsou generovány nepřetržitě. Mění svoji sílu, v závislosti na relativní poloze valivých elementů a drah.

Pro ověření a sledování zdrojů rázových pulsů jsou určeny sluchátka. Dovolují poslechnout si vzorek rázových pulsů. Ve sluchátkách je šumový koberec reprezentován spojitým tónem. Hodnota dBC pak leží přibližně na úrovni, kdy se spojitý signál mění na jednotlivé pulsy. Pro ložisko je typický náhodný sled silných rázů bez zřejmého rytmu, nejlépe slyšitelný několik dB pod hodnotou dBm.

Bodové poškození povrchu dráhy bude zachytitelné pouze v případě, že jej jejívalivý element „přejede“ v době trvání měřicího okna. Zejména u nízkootáčkových aplikací může přístroj minout tento silný růz jednoduše proto, že se během měřicího intervalu (cca 2 sec) vůbec neobjeví.

Chcete-li si po změření SPM hodnot poslechnout vzorek rázových pulsů, připojte sluchátka do konektoru (7). V Hlavním menu stiskněte klávesu NAHORU, čímž otevřete menu Měření stavu ložiska. Klávesami VLEVO/VPRAVO vyberte ikonu znázorňující poslech ložiska (ložisko s uchem) a pro volbu stiskněte klávesu NAHORU. Na displeji zůstane nastavena poslední naměřená hodnota dBm. Klávesami NAHORU/DOLŮ nastavte požadovanou úroveň amplitudy, kterou chcete poslouchat, vše pod touto hodnotou bude odfiltrováno.

Hlasitost sluchátek lze nastavit pomocí tlačítka VPRAVO. POZOR! Nastavení hlasitosti na maximální úroveň může poškodit váš sluch.

Pro návrat do menu Ložiska stiskněte klávesu se šipkou VLEVO.
Ověření stavu ložiska

POZOR! Měření provedené s nesprávně zadaným dBi může zapříčinit nesprávné ohodnocení stavu ložiska! Vždy proto zkontrolujte, že zadávané vstupní údaje jsou v pořádku.

Ověření jednoduše znamená, že se ujistíte, že informace, kterou poskytnete pracovníkům údržby, je tak správná a podrobná, jak je nutné. Vždy pamatujte, že:

- některé stroje mohou obsahovat více zdrojů rázových pulsů, než jen ložiska a
- může existovat mnoho různých příčin špatného stavu ložiska, než jen poškození.

Ohodnocení vyžaduje pouze běžnou péči a prostý rozum. Použijte ruční sondu a sluchátka a rovněž použijte vlastní smysly: zrak, hmat, sluch. Pečlivostí zabráníte vzniku planých poplachů či nečekaným vadám ložisek.

Úvodní měření a změny

Existují pouze dvě situace, kdy je ověření nutné. První je, když začínáte monitorovat ložisko.

- Vždy ověřte první měření na novém měřicím bodu či na nově instalovaném ložisku.

Účelem je stanovit spolehlivý základ pro porovnávání rutinních měření. Musíte si být jisti, že měříte rázové pulsy ložiska a že naměřená hodnota je správná. Pokud shledáte stav ložiska jako dobrý, není nutné následující měření na daném měřicím bodu ověřovat, až do doby, než se objeví výrazná změna.

Druhá situace nastane, když zaznamenáte změnu naměřené hodnoty (případně naměříte vysokou hodnotu hned od počátku):

- Provéďte veškeré významné nárusty nebo poklesy úrovně rázových pulsů.

A opět, musíte si být jisti, že měříte rázové pulsy ložiska a že vlastní naměřená hodnota je správná.

Pokud zjistíte, že stav ložiska není dobrý, je třeba rozlišit mezi problémem instalace, nedostatečným mazáním, přetížením nebo poškozením. Cílem je správně rozhodnout, jaký druh údržby je třeba provést. Pokud zjistíte rušivý signál, je pravděpodobně způsoben vadou stroje a měl by být nahlášen a opraven.
Identifikace zdroje rázových pulsů

Rázové pulsy jsou nejsilnější těsně u zdroje. Šíří se skrz materiál všech strojních částí, avšak jsou postupně tluxny (ztráty signálu) s vzdáleností a při přechodu přes rozhraní materiálů.

- Měřte na ložiskovém domku a poté poblíž něho. Nalezněte zdroj rázových pulsů.
- Poslouchajte nezvyklé zvuky.

Zdroje rušení

Jakýkoliv druh mechanického klepání, tvrdé nárazy nebo drhnutí produkují rázové pulsy, které mohou rušit měření ložisek. Mezi nejběžnější druhy rušení patří:

- Rázové pulsy špatně upevněných patek a základů stroje.
- Drhnutí mezi hřídelí a ostatními částmi stroje.
- Uvolněné části narážející do rámu stroje nebo ložiskového domku.
- Nadměrná vůle nebo nesouosost spojky.
- Vibrace ve spojení s uvolněním strojní části a nadměrná vůle ložiska (samotné vibrace měření neovlivní)
- Kavitace čerpadel.
- Poškození zubů převodů.
- Zátěžové a tlakové rázy vyplývající z normálního provozu některých strojů.
Vzorky rázových pulsů – stavové kódy

Sluchátka jsou určeny k ověření a lokalizaci zdroje rázových pulsů. Signál ložiska by měl být nejvyšší na ložiskovém domku. Naměříte-li silnější signál mimo ložiskový domek (za přechodem dvou materiálů), měříte nejpravděpodobnější rázové pulsy. Signál ložiska by měl být nejvyšší na ložiskovém domku. Naměříte-li silnější signál mimo ložiskový domek (za přehodem dvou materiálů), měříte nejpravděpodobnější rázové pulsy z jiného ložiska nebo z jiného zdroje. Typické pro ložiskový signál je, že nejsilnější rázové pulsy, nejlepší slyšitelné několik dB pod maximální úrovní dBm, se objevují v náhodných intervalech.

1. U zdravých ložisek je dBm v zelené zóně. dBm a dBc nejsou zcela u sebe.

2. Rázové pulsy poškozeného ložiska obsahují silné pulsy v červené zóně, v náhodném sledu a velký rozdíl mezi dBm a dBc. Po domazání ložiska by měly hodnoty klesnat, ale po krátkém čase opět narostou.

3. Suchý chod ložiska se vyznačuje vysokou kobercovou hodnotou dBc velmi blízko dBm. Po domazání ložiska by měly hodnoty klesnout a zůstat dále nízké. Podobný vzorek může být zapříčiněn kavitací, v takovém případě jsou však hodnoty změřené na těle čeřpadla vyšší, než na ložiskovém domku a domazání ložiska je nijak neovlivně.

4. Pravidelný vzorek obsahující shluky silných pulsů v rytmickém sledu může být zapříčiněn např. drhnutími částmi.

5. Jednotlivé pulsy v rytmickém sledu jsou způsobeny cvakajícími ventily, klepajícími částmi či regulérními zátěžovými rázy.

Typické vzorky rázových pulsů z valivých ložisek

Vzorek rázových pulsů je sled buď náhodných nebo rytmických silných pulsů (úrovně dBm) nad kobercem velmi rychlých slabších pulsů (úrovně dBc). Všimněte si:

- maximální hodnoty dBm
- rozdílu mezi dBm a dBc
- rytmu nejsilnějších pulsů.

Rytmus nejsilnějších pulsů je nejlépe rozeznatelný poslechem sluchátky při nastavení úrovně pár dB pod hodnotu dBm. Typická pro ložiskový signál je náhodná sekvence silných pulsů (není rozeznatelný rytmus). Rytmické rázy mohou přicházet z ložiska, ale mnohem častěji znamenají rušení. Typické vzorky jsou popsány na následujících stranách.

1 Vzorek zdravého ložiska

Ložisko v dobrém stavu by mělo mít dBm hodnotu pod 20 a dBc přibližně o 5 až 10 dB nižší. Pokud jste již jednou ověřili naměřenou hodnotu, není následné ověřování nutné.

2 Signál poškozeného ložiska

Vzorek na obrázku je typický pro poškození povrchu ložiska: dBm nad 35 dB, velký rozdíl mezi dBm a dBc a náhodný vzorek silných pulsů. Hodnota dBm zároveň indikuje stupeň vývoje vady:

35 – 40dBN malá vada
40 – 45dBN vážná vada
>45dBN velké riziko havárie.

První příznaky vady

dBm hodnota mezi 20 a 35 dB (ve žluté zóně) a mírný nárůst kobercové hodnoty jsou příznakem napětí na povrchu ložiska nebo menší vady. Všimněme si, že rozdíl mezi dBm a dBc se zvětšuje.

Ložiska s dBm ve žluté zóně by měly být měřeny častěji, aby bylo možné určit, zdali je stav stabilní, nebo se zhoršuje.

Prasklý vnitřní kroužek

Zjistit prasklý vnitřní kroužek ložiska není jednoduché, zejména při nízkých otáčkách. Můžete měřit nízké hodnoty po většinu obrátky ložiska a poté se ozvou jedna nebo dvě špičky ve chvíli, kdy se prasklina dostane do zatížené zóny. Síla signálu se může výrazně měnit s teplotou ložiska - v závislosti na tom, zdali se prasklina otevře, nebo ne.

Nepravidelné výsledky měření

Velký rozdíl mezi dvěmi po sobě jdoucími hodnotami v trendu jsou nebezpečným příznakem. Poškozené ložisko se časem nezlepší, avšak úroveň rázů může dočasně poklesnout.

Ujistěte se, že interval měření byl stanoven v souladu se změnami v zatížení výroby (např. vzduchové kompresory). Vždy měřte za stejných výrobních podmínek. Široký rozdíl v naměřených hodnotách v trendu se může objevit u značně zatížených válečkových ložisek s vadou povrchu. Vysoké hodnoty jsou způsobeny kovovými částmi odlupujícími se z povrchu a ostrými hranami ulomených okrajů. Když se částice a hrany vyválcují, hodnoty znovu poklesnou.
3 Vzorek ložiska se suchým chodem

Vysoká kobercová hodnota velmi blízko k maximální, to je typický vzorek ložiska se suchým chodem. dBm hodnota vždy nedosáhne červené zóny – typické pro suchý chod je, že rozdíl mezi dBm a dBc je velmi malý. Je-li signál nejsilnější na ložiskovém domku, může existovat několik příčin:

- nedostatečná dodávka maziva do ložiska (malý tok oleje, zaschlý nebo studený tuk)
- velmi nízké nebo velmi vysoké otáčky (bránící vytvoření olejového filmu oddělujícího zatížené valivé elementy a dráhy
- vada instalace (nadměrné předpětí) nebo geometrická deformace ložiskového domku
- nesouosost nebo ohnutý hřídel.

V případě velmi nízkých nebo velmi vysokých otáček, je možné vyzkoušet mazivo s rozdílnou viskozitou, nebo použít aditiva, aby se zabránilo kontaktu kov-kov mezi valivými povrchy.

V případě instalacní vady, neokrouhlosti domku a nesouososti, může úroveň rázových pulsů po domazání dočasně poklesnout, ale brzy zase vzroste. Neschopnost normálně ovlivnit zatížení ložisek na obou stranách spojky, příp. na obou stranách hřídele.

Kavitace a podobná rušení

Vzorek rázových pulsů zapříčinený kavitujícím čerpadlem nebo trvalým drhnutím je identicky se suchým chodem ložiska. Jedná se o rušivý signál, u kterého je nejvyšší úroveň rázových pulsů mimo ložiskový domek a neovlivní jej domazání ložiska.

4 Pravidelné praskání

Periodické praskání je typický rušivý signál způsobený drhnutím mezi částmi stroje, např. hřídel oproti ložiskovému domku nebo těsnění. Praskání se objevuje na frekvenci odpovídající otáčkám.

5 Rytmické špičky

Jednotlivé rytmické špičky mohou být způsobeny zátěžovými a tlakovými rázy, které se objevují během normálního chodu stroje. Jiné možné důvody jsou cvakající ventily nebo uvolněné části pravidelně klepající o rám stroje.
Je-li signál nejsilnější na ložiskovém domku, pak se může jednat o prasklý vnitřní kroužek.

6 Velký pokles hodnot

Poklesne-li hodnota rázových pulsů po předcházející sekvenci normálních hodnot, jedná se buď o vadu přístroje nebo snímače a nebo se jedná o vážnou vadu ložiska.
Potvrzení vady ložiska

Poté, co zjistíte typické znaky poškozeného ložiska – vysoké dBm, velký rozdíl dBm a dBc, náhodné špičky, nejsilnější signál na ložiskovém domku – musíte potvrdit jednu z následujících příčin naměřených výsledků:

- klepání uvolněných částí o ložiskový domek
- nadměrná vůle ložiska v kombinaci s vibracemi
- částice v mazadle
- vada ložiska.

Rušení může být obyčejně zjištěno pečlivou inspekci.

Mazací test

Mazací test je nejlepší prostředek k dosažení závěrečného verdiktu:

- ujistěte se, že mazivo je čisté a není kontaminováno
- domažte ložisko a opakujte měření. Měřte okamžitě po domazání a poté znovu ne několika hodinách.

Ujistěte se, že se mazivo skutečně dostalo do ložiska. Typicky dostanete následující výsledky:

A. Úroveň růzových pulsů zůstane konstantní. Signál je způsoben rušením nebo přeslechem z jiného ložiska.

B. Úroveň růzových pulsů ihned po domazání poklesne a zůstane dole. Cizí částice v mazivu byly odstraněny čerstvým mazivem.

C. Úroveň růzových pulsů ihned po domazání poklesne, ale po několika hodinách opět vzroste. Ložisko je poškozené.

Poznamenejme ještě, že cizí částice v mazivu mohou pocházet přímo z daného ložiska. Změňte proto ložisko znovu po několika dnech a ujistěte se, že hodnota zůstala nízká.
Měření na převodovkách

Někdy se rázové pulsy mohou šířit strojem bez významného útlumu. To znamená, že rázové pulsy od ložiska s nejvyšší úrovni mohou, za nepříznivých okolností, rušit měření na všech ostatních ložiskách.

Situace je zvlášť komplikovaná, když ložiska mají rozdílnou velikost a rychlost, jako u převodovek. Ložisko s vysokou rotační rychlostí má vysoké dB i když je provozováno v dobrých podmínkách. Ta samá úroveň rázových pulsů měřená na ložisku s nejvyšším dB by již indikovala špatný stav ložiska.

V takovém případě je třeba postupovat následovně:

1. Změřte obě ložiska s dBi =0. Tím se zjistí místo s nejsilnějším signálem. Na příkladu na obrázku byly naměřeny hodnoty 53dB_SV u ložiska A a 47 dB_SV u ložiska B.
 POZOR! Měříte-li s dBi=0, nelze brát v úvahu stavové indikátory zelená – žlutá – červená!

2. Stanovte směr možného přeslechu. Víte, že silnější zdroj signálu maskuje zdroj slabší. V našem případě tedy přeslech jde od místa A do místa B.

3. Odečtěte hodnoty dBi od naměřených absolutních hodnot dB_SV. V našem příkladu dostaneme 26 dB_N u ložiska A a 40 dB_N u ložiska B.

Nyní lze načrtat dva závěry: Hodnota naměřená na ložisku A, přicházející z místa silnějšího signálu, je pravděpodobně přesná. Stav ložiska je zhoršený (26dB = žlutá zóna), avšak ne vážně.

Hodnota naměřená na ložisku B je buď správná a nebo chybná. Je-li správná, označuje špatný stav ložiska (40 dB=červená zóna), avšak nelze vyloučit, že se jedná o přeslech od ložiska A. Jediným řešením je měřit častěji a sledovat trend vývoje na obou ložiskách.
Diagram pro vyhodnocení

Dobrý stav ložiska, instalace i mazání.

Porovnejte s hodnotou na sousedním ložisku. Je signál podobný s testovaným ložiskem?

Nově instalované ložisko?

Lokalizujte zdroj signálu. Je-li to možné, oddělte zdroj rušení a měřte znovu.

Pravděpodobné příčiny:
- Hřídel dře o ložiskový domek nebo konec hřídele dře o víčko ložiska.
- Poškození zubů převodů.
- Jiné mechanické drhnutí.

Lokalizujte zdroj signálu. Pravděpodobné příčiny:
- Zatěžové nebo tlakové růž od zařízení instalovaného na nosné konstrukci stroje.
- Jiné mechanické růž z provozu stroje. Je-li to možné, oddělte zdroj rušení a měřte znovu.

Pravděpodobné příčiny:
- Zatěžové nebo tlakové růž v chodu stroje zapříčiněné mechanismickými růž v ložisku.
- Vady jednotlivých zubů převodů.
- Poškození ložiska.

Nebyl získán žádný nebo jen velmi slabý signál.
Ne

Pravděpodobné příčiny:
- Poškození ložiska. Měře v kratších intervalech a sledujte vývoj trendu závady.
- Ciží částice v mazivu.
- Může být též uvolněné víčko ložiska, ochranný kryt a pod. Je-li to možné, oddělte zdroj rušení a měře znovu.

Ano

Je-li to možné, domážete ložisko a přitom provádějte měření. Tím se lze ujistit, že mazivo proniklo do ložiska.

Hodnoty poklesnou, ale po několika hodinách znovu vzrostou.
Příčina: poškození ložiska. Zkraťte měřící interval a sledujte vývoj trendu trysky.

Hodnoty poklesnou na normální úroveň a již se nezvyšují.
Příčina: ciží částice v ložísku byly vytlačeny novým mazivem.

Hodnoty vůbec nepoklesnou.
Pravděpodobné příčiny: rušení od volného víčka ložiska, ochranného krytu nebo podobné části. Možné je též rozsáhlé poškození ložiska.

Ano

Pravděpodobné příčiny:
- Axiální rázy, zážehové rázy, vadná spojka, poškození zubů převodů, přeslech od jiného vadného ložiska.

Hodnoty poklesnou, ale po několika hodinách znovu vzrostou maximální hodnota dBm.
Příčina: nedostatečné mazání zapříčiněné menším poškozením ložiska.

Hodnoty poklesnou na normální úroveň a již se nezvyšují.
Příčina: nedostatek maziva.

Hodnoty nepoklesnou.
Pravděpodobné příčiny:
- Kavitace čerpadla
- Mechanické drhnutí
- Poškození zubů převodů

Hodnoty poklesnou, ale po několika hodinách znovu vzrostou maximální hodnota dBm.
Příčina: nedostatečné mazání zapříčiněné menším poškozením ložiska.

Hodnoty poklesnou na normální úroveň a již se nezvyšují.
Příčina: nedostatek maziva.

Hodnoty nepoklesnou.
Pravděpodobné příčiny:
- Kavitace čerpadla
- Mechanické drhnutí
- Poškození zubů převodů

Hodnoty nepoklesnou.
Pravděpodobné příčiny:
- Vnitřní kroužek ložiska prokluzuje na hřídeli
- Vnější kroužek ložiska prokluzuje v domku
- Hodnoty byly měřeny ihned po domazání (u tukem mazaných ložisek)

Ne

Pravděpodobné příčiny:
- Nesprávná instalace ložiska
- Nedostatečné mazání, je možné, že v kombinaci s malou vadou.
- Kavitace čerpadla
- Mechanické drhnutí
- Poškození zubů převodů

Je-li to možné, domážete ložisko a přitom provádějte měření. Tím se lze ujistit, že mazivo proniklo do ložiska.

Hodnoty poklesnou, ale po několika hodinách znovu vzrostou.
Příčina: poškození ložiska. Zkraťte měřící interval a sledujte vývoj trendu trysky.

Hodnoty poklesnou na normální úroveň a již se nezvyšují.
Příčina: ciží částice v ložísku byly vytlačeny novým mazivem.

Hodnoty vůbec nepoklesnou.
Pravděpodobné příčiny: rušení od volného víčka ložiska, ochranného krytu nebo podobné části. Možné je též rozsáhlé poškození ložiska.

Ano

Pravděpodobné příčiny:
- Nesprávná instalace ložiska
- Nedostatečné mazání, je možné, že v kombinaci s malou vadou.
- Kavitace čerpadla
- Mechanické drhnutí
- Poškození zubů převodů

Je-li to možné, domážete ložisko a přitom provádějte měření. Tím se lze ujistit, že mazivo proniklo do ložiska.

Hodnoty poklesnou, ale po několika hodinách znovu vzrostou.
Příčina: poškození ložiska. Zkraťte měřící interval a sledujte vývoj trendu trysky.

Hodnoty poklesnou na normální úroveň a již se nezvyšují.
Příčina: nedostatek maziva.

Hodnoty nepoklesnou.
Pravděpodobné příčiny:
- Kavitace čerpadla
- Mechanické drhnutí
- Poškození zubů převodů

Hodnoty nepoklesnou.
Pravděpodobné příčiny:
- Vnitřní kroužek ložiska prokluzuje na hřídeli
- Vnější kroužek ložiska prokluzuje v domku
- Hodnoty byly měřeny ihned po domazání (u tukem mazaných ložisek)

Ano

Pravděpodobné příčiny:
- Vnitřní kroužek ložiska prokluzuje na hřídeli
- Vnější kroužek ložiska prokluzuje v domku
- Hodnoty byly měřeny ihned po domazání (u tukem mazaných ložisek)
Měření teploty

Měření teploty se provádí pomocí bezkontaktního infračerveného (IR) snímače. Snímač je umístěn v horní části přístroje, vedle SPM sondy.

Okno snímače je překryto filtrem infračerveného záření. Je-li okénko zakryto nebo zašpiněné jiným materiálem, např. vodou, na snímač nedopadne správně množství IR paprsků a naměřená hodnota nebude správná.

Měření teploty:

V Hlavním menu stiskněte klávesu VLEVO, čímž otevřete menu měření teploty. Umístěte hrot sondy na povrch na kterém chcete měřit teplotu a stiskněte tlačítko Měření nebo zatlačte hrot sondy. Pro přesnější výsledek měřte dvakrát po několika sekundách. Měření bude stále pokračovat, dokud držíte tlačítko Měření, nebo dokud je zatlačen hrot sondy.

Pro návrat do hlavního menu stiskněte šipku VLEVO.

Teplota povrchu je dále měřena automaticky pokaždé, když měříte stav ložiska metodou SPM. Chcete-li při měření zobrazit naměřenou teplotu, pak v menu měření stavu ložiska šipkami VLEVO/VPRAVO vyberte ikonu Návrat a stiskněte šipku NAHORU. Stiskněte šipku VLEVO pro vstup do menu měření teploty. Teplota zobrazená na displeji představuje poslední naměřenou hodnotu, manuálně nebo automaticky. Pro návrat do hlavního menu stiskněte šipku VLEVO.

Pozn.: používáte-li pro měření SPM externí sondu, měřte teplotu manuálně (viz odstavec výše).
Použití funkce Stetoskop

Funkce Stetoskop je užitečná ke zjišťování nepravidelností ve zvuku strojů, jako jsou zátěžové rázy či drhnutí.

Připojte sluchátka do konektoru (7). V hlavním menu stiskněte tlačítko VPRAVO pro vstup do menu Stetoskop. Podržte hrot sondy oproti objektu, který chcete poslouchat. Šipkami NAHORU/DOLU nastavte hlasitost (1-8).

POZOR! Nastavení hlasitosti na maximální úroveň může poškodit váš sluch!

Pro návrat do hlavního menu stiskněte šipku VLEVO.
Technická specifikace

Kryt/krytí: ABS/PC, IP54
Rozměry: 158 x 62 x 30 mm
Hmotnost: 185 g vč. baterií
Klávesnice: utěsněná membránová (silikonová guma)
Displej: grafický monochromatický, 64 x 128 bodů, LED podsvit
Indikace stavu ložisek: zelená, žlutá a červená LED diody
Indikace měření: Modrá LED dioda
Napájení: 2 x 1.5 V AA, alkalická nebo akumulátor
Životnost baterie: > 8 hodin normálního provozu
Provozní teplota: 0 °C až +50 °C
Vstupní konektor: Lemo koaxiální, pro externí SPM snímače (ruční nebo bajonet)
Výstupní konektor: 3,5 mm stereo Jack pro sluchátka
Obecné funkce: Zobrazení stavu baterie, TLT test snímače, obrázkové menu se symboly, paměť na 10 měření

SPM - Měření rázových pulsů
Měřicí technika: dBm/dBc,
Rozsah měření: -9 až + 90 dB, ±3 dB
Typ snímače: Vestavěná sonda

Měření teploty
Rozsah měření: –10 až +160 °C (14°F - 320°F)
Rozlišení: 1 °C (1 °F)
Typ snímače: teplotní snímač TPS 334/3161, vestavěný bezkontaktní IR-senzor

Stetoskop
Nastavení hlasitosti: 8 úrovní zesílení

Produktové číslo
BC100 Bearing Checker

Příslušenství
EAR12 Náhlavní sluchátka v tlumičích hluku
TRA73 Externí snímač v ruční sondě
TRA74 Snímač s rychlokonektorem pro adaptéry SPM
TRA75 Snímač s rychlokonektorem, úhlový konektor
CAB52 měřící kabel, 1.5 m, Lemo – BNC, násuvný
15286 Držák ext. snímače na opasek
15287 Pouzdro pro příslušenství na opasek
15288 Ochranný kryt s poukhem na ruku
93363 Kabelová spojka, Lemo - BNC
93062 Kabelová spojka, BNC – TNC, zásuvka-zástrčka
Údržba a kalibrace

Kalibrace přístroje, např. za účelem shody s požadavky ISO standardu, se doporučuje provádět jedenkrát ročně.

Potřebujete-li provést servis, upgrade či kontrolu kalibrace, kontaktujte SPM zástupce:

Směrnice EU o odpadu z elektrických a elektronických zařízení

WEEE je směrnice EU 2002/96/EC Evropského parlamentu a Rady týkající se odpadu z elektrických a elektronických zařízení.

Účelem této direktivy je, jako hlavní priorita, prevence odpadu z elektrických a elektronických zařízení (WEEE), a dále, opětovné použití, recyklace a jiné formy obnovy takového odpadu, aby se snížila likvidace odpadu.

Tento výrobek musí být likvidován jako elektronický odpad a je označen symbolem přeškrtnutého odpadkového koše s kolečky za účelem, aby se zabránilo likvidaci společně s domovním odpadem.

Po uplynutí životnosti přístroje jej můžete vrátit zástupci SPM, který zabezpečí správnou likvidaci, nebo jej můžete likvidovat společně s vaším ostatním elektronickým odpadem.
<table>
<thead>
<tr>
<th>dB _i</th>
<th>dB _N</th>
<th>dB _M</th>
<th>dB _c</th>
</tr>
</thead>
<tbody>
<tr>
<td>dB _i</td>
<td>50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>d</td>
<td>40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>n</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>n</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>n</td>
<td>10</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>dB _i</th>
<th>dB _N</th>
<th>dB _M</th>
<th>dB _c</th>
</tr>
</thead>
<tbody>
<tr>
<td>dB _i</td>
<td>50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>d</td>
<td>40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>n</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>n</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>n</td>
<td>10</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>dB _i</th>
<th>dB _N</th>
<th>dB _M</th>
<th>dB _c</th>
</tr>
</thead>
<tbody>
<tr>
<td>dB _i</td>
<td>50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>d</td>
<td>40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>n</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>n</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>n</td>
<td>10</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>dB _i</th>
<th>dB _N</th>
<th>dB _M</th>
<th>dB _c</th>
</tr>
</thead>
<tbody>
<tr>
<td>dB _i</td>
<td>50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>d</td>
<td>40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>n</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>n</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>n</td>
<td>10</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>